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1 Introduction 

th .' 1 "Po ~~ 1cl~ t..''".t 

~ ... L .rcy, C~'.:.~ );;A:i.l 

A METHOD FOR DER.IVI ID ~UENCY RESPOJ~E 
from 

TRANSIENT RESPOISE DATA 

The characteristics of a linear component are known to be cam~ 

pletely determined b.Y its steady state frequen~ response which relate~ 

the output of the component to its i nputo Hence~ the analysis and 

synthesis of a complex system are simplified when the frequency response 

of each unit making up the system is knowno For SU(Ch a system, the 

overall amplitude ratio of output t o i nput for any frequency is obtained 

by multiplication of the amplitude ratios for ea~h individual ~omponento 

As a result of this property, a lsrge body of design procedure for 

control systems has been based on linear f r equenc.y response methods~ 

While the experimental measurement of frequency response for 

electronic amplifiers, electric motors , and other electri~al equipment 

is generally not difficult, the applicati on of a sinusoidal input vith 

constant amplitude and frequenc.y to hydraulic or pneumati© components 

is often impracticalo When the nature of t he physi<OO.l component 

prohibits measurement of the frequency r esponse, a transient response 

test (to a suitable step or impulse input .function) :may be pe:nnissible o 

If a method were available qy which the f requency rasponse ~ould be 

ierived from this transient response , frequen~y response design tech= 

1iques could be applied for the system incorporating this component. 

The mathematical foundation for such a method would be the Fcurier 

;ransform or the Laplace transform, wit h t he comple.x number restricted 

•o values of j w o When the time respons9 is not in ana.lyti©al form, 



numerical methods of applying the Fourier or Laplace t r ansforms must 

be used. The rest of this paper will describe such a method. The 

method requires that the input function be lalown analytically and that 

both the input and the component output functions tend to a constant 

rate of change after a finite time. 

Deviation of Method 

Figure 1 shows an output quantity vs. time response curve in which 

the time axis has been divided into equal intervals and straight lines 

drawn between the corresponsing points on the output curve. This 

approximation of the curve by straight line segments can be as exact 

as desired by reducing the size of the intervaJ.s. Further, the approxi­

mation can be decomposed into a series of straight line curves. This 

is shotm in Figure 2. In this figure, the slopes m0 , m1, etc. are of 

such·a value that the approximate analytic expression for the output 

becomes the series. 

X(t) -mot -r- m 1[t -t:r] rmz[~ -~o-] -t ... ·-+ 

mn_,{t-(n--~)tr] -+rnn[t -(n-r)-cr] + • · · (1) 

The Laplace transform for each component of the series (1) may 

be taken and the sum representing the transform of the approximate 

output transient may be written. 
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(2) 

In a typical application of (2), it would be more convenient to 

express the slopes m in terms of the output quantity and time. The 

first two slopes in terms of x and t are: 

mo XI - -c;-

m, X 2. - x, - x~ - CT CT 

The value for m2 is the slope of the third segment less the 

slope of the second segment$ 

mz. _ X3-Xz. 
o-

Then the general term becomes 
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(3) 

(4) 

(5) 



Equation (2) in terms of the ordinate of the output curve for 

simplicity is written as a summation. 

The expression for the transfer function can be obtained by dividing 

(6) by Laplace transform of the input y. 

The frequency response is found by substituting j ~ for s in (7)e 

(8) 

I 

e-J~ =- c~s h- js,~b 



Conveniently generated input time functions are the impulse, step 

displacement and step velocity (ramp) with corresponding Laplace trans­

form 1, 1/s, l/s2 

Sul::stituting these in (9) gives the following useful EGuations. 

Impulse: 
oO 

6(jw) =--a-~. [ Y-1 -r 2. (XI(-;( xl\'_ 1 + X/(-2) cas ( k-1)ot.u 
,...., K-:-2 

-f[ (flf -d. X'f-1 +X K-2) s/YJ ( K -t)zrlAJ 1 
Ks l. 

(10) 

Step displacement: 

r;i,(j w) = -A [I (X~ • J}l(-1 rx'(-2) sin ( 1(-l)o-t.; -r 
(11) 

J'[x, -r l_.(x 1r -.2 XK-1 r x)f-z.)Co5 (1(-t)tr) 
K~2 'f 

Step velocity: 

· 4(jw) =- -J- f X, t-I('JJ(-J,j.x_,-t-XI(-2)co..s(K-I).rw 

...j %
2

( x~ -:2.~1(-t + XI( -z. )s/fl (k-1) b 1c] 
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Dead time , the time difference between the initiation of an 

input to the system and the beginning of the output response, is handled 

automatically by the above methods 

Referring to equation 8, the first term will be zero if the time 

increment is less than the dead time and then all terms will contain 

the exponential factors representing linear added phase shift correspond-

ing to a time delay. 

Example 

As an illustration of this method one example is used based on 

analytically determined system ~response curves for which the actual 

frequency response is determined for comparisono A second-order 

system transfer function 

is shown in Figure 4 for the critically damped case with Gv0 set 
I 

equal to unity & This curve can be obtained directly by replacing 

s by J u..J in equation 13. 

Setting j = 1 

~(S)-=::. ___ ,! ____ _ 

-wJ.. -r .:zj w -r 1 

' 
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and the time response of the system with 

to an impulse ~s given by 

(15) 

Equation 15 is plotted in Figure 3 o bhoosing cr as one half' second , the 
I 

required v~l~es of x substituted into equation ~0 gives 

- £ [Oe303 - ZJ. Z..3 8Cos( 40-(i))- 6, {) 9 tc D S W 
w< 

:·. 0,0 3 Z cos ( /0-UJ) -t tJ, D I o c.. o~ (C. . .s-w) +- !J. D lo Co3 (3c.u) 

r 0, 0/0COJ (3 .. -.Sk.Y)+ 0.();3c;oJ(L/t.u) + ()~;~os(.s:-t.Uj 

-+tJ.D I 2 c.. D s ( b,..s-C<J) - J /3'- 2.2> &' ~In &,s w) - o, ~ t1 Pc o..s u:. 

0. 0 3 2. 0/17 (Its-'-<J) + .o, 0 I 61. V1 ( 2£ tA) + 0,. o I St 'r/ 3 LV 

+ 0,0/.;:,/n@S'1+- 0,0t3.Stnf/-0) -f-LJ. D/.J.SI/7{:~) 

+ 0, otz.sln(b.-s-cofl) 

The equation was solved for frequ~ncies 081, Oo3, 0 0 7, 1 and 2 radians 

per second and the values obtained are indicated on Figure 4o 
' I ' ' 
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Figure 1. Transient response and straight line approximation 
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Figure 2. Components of the transient 
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